**TCC, HUMAN, CLONE aE11**

<table>
<thead>
<tr>
<th>Catalog no</th>
<th>HM2167</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot number</td>
<td>-</td>
</tr>
<tr>
<td>Expiry date</td>
<td>-</td>
</tr>
</tbody>
</table>

**Description**
Monoclonal antibody aE11 reacts with a C9 neoantigen of the terminal complement complex (TCC). The three distinct activation pathways of complement converge with the formation of a C5 convertase. The cleavage of C5 by this convertase initiates the lytic or terminal pathway. In contrast to the activation pathways, which require enzymatic cleavage for activation, the terminal pathway relies on conformational changes induced by binding. Binding of C6 facilitates binding of C7 which alters the conformation of the complex. After binding of C8, a variable number of C9 molecules associate with the C5b678 complex, which is also termed the terminal complement complex (TCC). The formation of TCC causes lysis of cells or can trigger a variety of cellular metabolic pathways resulting in the synthesis and release of inflammatory mediators. The TCC contains neoantigens that are absent from the individual native components. C9 neoantigens are present both in the membrane-bound (MAC) and the fluid-phase (SC5b-9) complex. TCC is present in normal human plasma and increased in patients with complement activation.

**Aliases**
Terminal complement complex, MAC complex, complement membrane attack complex, sC5b-9 complex.

**Species**
Mouse IgG2a

**Cross reactivity**

<table>
<thead>
<tr>
<th>Cross reactant</th>
<th>Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horse</td>
<td>Yes</td>
</tr>
<tr>
<td>Swine</td>
<td>Yes</td>
</tr>
</tbody>
</table>

**Formulation**
1 ml (100 µg/ml) 0.2 µm filtered protein G purified antibody solution in PBS containing 0.1% bovine serum albumin. The endotoxin concentration is < 24 EU/mg, determined with HIT302 LAL Assay.

**Application**

<table>
<thead>
<tr>
<th>Application</th>
<th>F®</th>
<th>Fc®</th>
<th>FS®</th>
<th>IA®</th>
<th>IF®</th>
<th>IP®</th>
<th>P®</th>
<th>W®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| No          |    |     |     |     |     |     |    | N.D.

N.D. = Not Determined; F = Frozen sections; FC = Flow Cytometry; FS = Functional Studies; IA = Immuno Assays; IF = Immuno Fluorescence; IP = Immuno Precipitation; P = Paraffin sections; W = Western blot

**Application notes**
Dilutions to be used depend on detection system applied. It is recommended that users test the reagent and determine their own optimal dilutions. The typical starting working dilution is 1:50.

FS: Antibody aE11 inhibits platelet activation by antiphospholipid antibody serum. (Ref.5).

IF: Cryosections of 10 µm were dried, fixed in acetone at 4°C for 10 min, dried and blocked for 20 min with PBSA.
Figure 1 and 2: picture of an immuno fluorescence experiment and immuno assay.

Immuno fluorescence: detection of TCC with HM2167, dilution 20x in PBSA.
Immuno assay: HM2167 was used as a capture antibody in different concentrations to detect TCC.

References

Positive control
Mucosa from patients with H. Pylori.

Storage and stability
Product should be stored at 4°C. Under recommended storage conditions, product is stable for one year.

Precautions
For research use only. Not for use in or on humans or animals or for diagnostics. It is the responsibility of the user to comply with all local/state and federal rules in the use of this product. Hycult Biotech is not responsible for any patent infringements that might result from the use or derivation of this product.